Using Distributed Data Mining and Distributed Artificial Intelligence for Knowledge Integration

نویسندگان

  • Ana Carolina M. Pilatti de Paula
  • Bráulio Coelho Ávila
  • Edson Emílio Scalabrin
  • Fabrício Enembreck
چکیده

In this paper we study Distributed Data Mining from a Distributed Artificial Intelligence perspective. Very often, databases are very large to be mined. Then Distributed Data Mining can be used for discovering knowledge (rule sets) generated from parts of the entire training data set. This process requires cooperation and coordination between the processors because inconsistent, incomplete and useless knowledge can be generated, since each processor uses partial data. Cooperation and coordination are important issues in Distributed Artificial Intelligence and can be accomplished with different techniques: planning (centralized, partially distributed and distributed), negotiation, reaction, etc. In this work we discuss a coordination protocol for cooperative learning agents of a MAS developed previously, comparing it conceptually with other learning systems. This cooperative process is hierarchical and works under the coordination of a manager agent. The proposed model aims to select the best rules for integration into the global model without, however, decreasing its accuracy rate. We have also done experiments comparing accuracy and complexity of the knowledge generated by the cooperative agents.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Outlier Detection in Wireless Sensor Networks Using Distributed Principal Component Analysis

Detecting anomalies is an important challenge for intrusion detection and fault diagnosis in wireless sensor networks (WSNs). To address the problem of outlier detection in wireless sensor networks, in this paper we present a PCA-based centralized approach and a DPCA-based distributed energy-efficient approach for detecting outliers in sensed data in a WSN. The outliers in sensed data can be ca...

متن کامل

Entropy-based Consensus for Distributed Data Clustering

The increasingly larger scale of available data and the more restrictive concerns on their privacy are some of the challenging aspects of data mining today. In this paper, Entropy-based Consensus on Cluster Centers (EC3) is introduced for clustering in distributed systems with a consideration for confidentiality of data; i.e. it is the negotiations among local cluster centers that are used in t...

متن کامل

Using the Modified Shuffled Frog Leaping Algorithm for Optimal Sizing and location of Distributed Generation Resources for Reliability Improvement

Restructuring the recent developments in the power system and problems arising from construction as well as the maintenance of large power plants lead to increase in using the Distributed Generation (DG) resources. DG units due to its specifications, technology and location network connectivity can improve system and load point reliability indices. In this paper, the allocation and sizing of di...

متن کامل

Distributed Incremental Least Mean-Square for Parameter Estimation using Heterogeneous Adaptive Networks in Unreliable Measurements

Adaptive networks include a set of nodes with adaptation and learning abilities for modeling various types of self-organized and complex activities encountered in the real world. This paper presents the effect of heterogeneously distributed incremental LMS algorithm with ideal links on the quality of unknown parameter estimation. In heterogeneous adaptive networks, a fraction of the nodes, defi...

متن کامل

The Optimal Placement of Distributed Generation (DG) to Improve the Voltage Profile and Reduce Losses in Radial Distribution Networks Using PSO

Voltage profile and losses are important factors in a distribution network in which there arevariety of ways to improve them. In this paper, distributed generation (DG) is used as a solutionto improve the above characteristics. Backward/Forward Sweep load flow algorithm is used dueto the inefficiency of usual load flow algorithms because of high R/X ratio and their lack ofconvergence in distrib...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007